inorganic compounds

Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Dilithium barium diphosphate

Nezha Dridi,^a E. Arbib,^a† Ali Boukhari^a and Elizabeth M. Holt^b*

^aLaboratoire de Chimie du Solide Appliqué, Laboratoire Associé Francophone N° 501, Université Mohammed V, Agdal, Av. Ibn Batouta, BP 1014, Rabat, Morocco, and ^bDepartment of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, USA Correspondence e-mail: betsy@biochem.okstate.edu

Received 14 January 2002 Accepted 15 April 2002 Online 11 May 2002

The crystal structure of the novel title diphosphate, $Li_2BaP_2O_7$, exists with a three-dimensional lattice composed of BaO_9 polyhedra linked to corner- and edge-sharing P_2O_7 diphosphate groups, forming layers parallel to the (010) plane, the layers being linked by P-O-Ba bridges. Tunnels thus created between the layers are occupied by Li^+ cations, two of which lie on twofold axes.

Comment

In recent years, structures of the formulation $A^{I}_{2}B^{II}P_{2}O_{7}$ (with $A^{I} = Li^{+}$, Na⁺ or K⁺, and where B^{II} is a bivalent ion; Spirlet *et* al., 1993; Laligant, 1992a,b; Liebertz & Stahr, 1983; Huang & Hwu, 1998; Erragh et al., 1991, 1995, 1998; Belharouak et al., 2000; Dridi et al., 2000; Bennazha et al., 1999; El Maadi et al., 1994, 1995a,b; Trunov et al., 1991; Faggiani & Calvo, 1976) have been the object of structural investigation as single crystals. Except for Na₂PdP₂O₇ (Laligant, 1992a) and β -Na₂-CuP₂O₇ (Erragh et al., 1995), which crystallize with similar cell dimensions in space group C2/c, there are no isotypical relationships within the group. However, few of these structures exist with $A^{I} = Li^{+}$. Only the structures of $Li_{2}CuP_{2}O_{7}$ (Spirlet et al., 1993) and Li₂PdP₂O₇ (Laligant, 1992b) have been reported in the literature with full structural details. Li₂BaP₂O₇ was first reported by Liebertz & Stahr (1983), who described the chemical preparation of the material. From precession photographs, they observed the systematic absences hkl with h + k = 2n and h0l with l = 2n, and thus reported the cell parameters a = 7.078 (4), b = 12.164 (6) and c = 13.856 (6) Å, and space group *Cmcm* with Z = 8, for this compound. Neither positional parameters nor an R factor were published.

In this paper, we describe the synthesis and solid-state crystal structure redetermination of $Li_2BaP_2O_7$, a member of this little-known family of lithium-containing materials. We have refined the structure in monoclinic space group C2/c with

 $\beta = 90.49 (7)^{\circ}$. Both the previously reported orthorhombic space group and C2/c share the same absences. Accommodating Li₂BaP₂O₇ with Z = 8 in space group *Cmcm* with Z =16 requires the placing of Ba and the P₂O₇ group on a mirror, twofold or $\overline{1}$ symmetry element. A projection view of the P₂O₇ group refined in C2/c shows it to be staggered, with P1-O14-P2 = 123.3 (4)° and O-P···P-O torsion angles averaging 28.97°, significantly distorted from eclipsed (O-P···P-O = 0°) or ideally staggered symmetry (O-P···P-O = 60°), and thus the phosphate O atoms are not refinable except as disordered positions in orthorhombic space group *Cmcm*.

A projection view of $Li_2BaP_2O_7$ on to the (100) plane is shown in Fig. 1. The structure may be regarded as a threedimensional packing of BaO_9 polyhedra sharing edges and corners with P_2O_7 diphosphate groups and thus forming layers parallel to [010], which are held together by P2-O21-Babridges. This arrangement gives rise to tunnels within the layers. The Li⁺ cations are located in these tunnels.

The coordination sphere of the Ba²⁺ cations is composed of nine O²⁻ anions in an irregular geometry, located at Ba–O distances of between 2.714 (7) and 3.132 (8) Å. Each BaO₉ polyhedron is surrounded by nine PO₄ tetrahedra belonging to five different P₂O₇ groups. These values are comparable with those observed in various barium phosphate compounds, such as CdBaP₂O₇, BaCuP₂O₇ and σ -Ba₂P₂O₇ (Moqine *et al.*, 1991; Alaoui ElBelghiti *et al.*, 1991, 1995). Bond-valence

Figure 1

A projection view of $\rm Li_2BaP_2O_7$ on to the (100) plane. Displacement ellipsoids are shown at the 50% probability level.

[†] Alternative address: Department of Chemistry, Faculté des Sciences, Kenitra, Morocco.

calculations (Brown, 1981) show a total effective cationic charge of 1.877 for Ba^{+2} in this environment.

The Li⁺ ions are seen in three different sites. Atom Li1, on a twofold axis, is surrounded by six O atoms in a distorted octahedral geometry, with an average Li1-O distance of 2.26 (2) Å. Atom Li2, also on a twofold axis, displays tetrahedral geometry, with an average Li2-O distance of 1.98 (2) Å. Atom Li3, in a general position, has five O-atom neighbors at distances in the range 1.932 (15)–2.41 (2) Å, with an average Li3–O distance of 2.10 (2) Å.

Bond-valence calculations total 0.849, 0.989 and 0.975 for Li1, Li2 and Li3, respectively. Bond-valence calculations which reveal an effective charge significantly less than the theoretical ionic charge frequently signal ion mobility in the site. Support for this point of view comes from the obvious elongation of the displacement ellipsoid of Li3 in the direction of the tunnel parallel to the (100) direction. On this basis, Li₂BaP₂O₇ may be suspected to have potentially exploitable physical properties, such as conductivity (Ba and Li1) and luminescence (with doping of small quantities of Ln³⁺ into the non-centrosymmetric Ba²⁺ site).

Experimental

Crystals of Li₂BaP₂O₇ were prepared by fusion of Li₂CO₃, BaCO₃ and NH₄H₂PO₄ in the proportions 1:1:2. The mixture was heated slowly to the fusion temperature (1100 K), was maintained at this temperature for 2 h and was then cooled slowly (5 K h^{-1}) to 650 K; the furnace power was then switched off. Single crystals of Li₂BaP₂O₇ were obtained.

Crystal data

Li ₂ BaP ₂ O ₇	$D_x = 3.511 \text{ Mg m}^{-3}$
$M_r = 325.16$	Mo $K\alpha$ radiation
Monoclinic, $C2/c$	Cell parameters from 25
a = 7.147 (8) Å	reflections
b = 12.283 (14) Å	$\theta = 6.410.5^{\circ}$
c = 14.016 (16) Å	$\mu = 6.96 \text{ mm}^{-1}$
$\beta = 90.49 \ (7)^{\circ}$	T = 293 (2) K
$V = 1230 (2) \text{ Å}^3$	Parallelepiped, colorless
Z = 8	$0.1 \times 0.1 \times 0.1 \text{ mm}$

Data collection

Syntex P4 four-circle diffractometer	$R_{\rm int} = 0.091$
$\theta/2\theta$ scans	$\theta_{\rm max} = 30^{\circ}$
Absorption correction: ψ scan	$h = 0 \rightarrow 10$
(XEMP; Siemens, 1991)	$k = 0 \rightarrow 14$
$T_{\min} = 0.447, \ T_{\max} = 0.499$	$l = -19 \rightarrow 19$
2324 measured reflections	3 standard reflections
1355 independent reflections	every 97 reflections
1231 reflections with $I > 2\sigma(I)$	intensity decay: nor

Refinement

Refinement on F^2 $w = 1/[\sigma^2(F_o^2) + (0.1P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ R(F) = 0.062 $wR(F^2) = 0.189$ $(\Delta/\sigma)_{\rm max} = 0.002$ $\Delta \rho_{\rm max} = 0.06 \ {\rm e} \ {\rm \AA}^{-3}$ S = 1.49 $\Delta \rho_{\rm min} = -0.09 \ {\rm e} \ {\rm \AA}^{-3}$ 1355 reflections 111 parameters

intensity decay: none

Data collection: XSCANS (Siemens, 1991); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997).

Table 1

Selected	geometric	parameters ((Å, °)
----------	-----------	--------------	-------	---

2.714 (7) 2.747 (7) 2.788 (7) 2.842 (8) 2.886 (7) 2.924 (7) 2.957 (7) 2.965 (6) 3.132 (8)	$\begin{array}{c} P2-O21 \\ P2-O23 \\ P2-O14 \\ Li1-O13^{i} \\ Li1-O21^{iv} \\ Li1-O23^{v} \\ Li2-O11^{vi} \\ Li2-O23^{vii} \\ Li2-O23^{vii} \\ \end{array}$	1.527 (7) 1.542 (6) 1.656 (7) 2.05 (2) 2.116 (10) 2.61 (2) 1.966 (15) 2.002 (17)
2.747 (7) 2.788 (7) 2.842 (8) 2.886 (7) 2.924 (7) 2.957 (7) 2.965 (6) 3.132 (8)	$\begin{array}{c} P2 - O23 \\ P2 - O14 \\ Li1 - O13^{i} \\ Li1 - O21^{iv} \\ Li1 - O23^{v} \\ Li2 - O11^{vi} \\ Li2 - O23^{vii} \\ Li2 - O23^{vii} \\ Li2 - O21^{iv} \\ Li2 - O21^{$	1.542 (6) 1.656 (7) 2.05 (2) 2.116 (10) 2.61 (2) 1.966 (15) 2.002 (17)
2.788 (7) 2.842 (8) 2.886 (7) 2.924 (7) 2.957 (7) 2.965 (6) 3.132 (8)	$\begin{array}{c} P2 - O14 \\ Li1 - O13^{i} \\ Li1 - O21^{iv} \\ Li1 - O23^{v} \\ Li2 - O11^{vi} \\ Li2 - O23^{vii} \\ $	1.656 (7) 2.05 (2) 2.116 (10) 2.61 (2) 1.966 (15) 2.002 (17)
2.842 (8) 2.886 (7) 2.924 (7) 2.957 (7) 2.965 (6) 3.132 (8)	$\begin{array}{c} \text{Li1}-\text{O13}^{i} \\ \text{Li1}-\text{O21}^{iv} \\ \text{Li1}-\text{O23}^{v} \\ \text{Li2}-\text{O11}^{vi} \\ \text{Li2}-\text{O23}^{vii} \\ \text{Li2}-\text{O23}^{vii} \end{array}$	2.05 (2) 2.116 (10) 2.61 (2) 1.966 (15) 2.002 (17)
2.886 (7) 2.924 (7) 2.957 (7) 2.965 (6) 3.132 (8)	$\begin{array}{c} Li1 - O21^{iv} \\ Li1 - O23^{v} \\ Li2 - O11^{vi} \\ Li2 - O23^{vii} \\ Li2 - O23^{vii} \end{array}$	2.116 (10) 2.61 (2) 1.966 (15) 2.002 (17)
2.924 (7) 2.957 (7) 2.965 (6) 3.132 (8)	$Li1 - O23^{v}$ $Li2 - O11^{vi}$ $Li2 - O23^{vii}$ $Li2 - O23^{vii}$	2.61 (2) 1.966 (15) 2.002 (17)
2.957 (7) 2.965 (6) 3.132 (8)	$Li2-O11^{vi}$ $Li2-O23^{vii}$ $Li2-O21^{iv}$	1.966 (15) 2.002 (17)
2.965 (6) 3.132 (8)	$Li2 - O23^{vii}$	2.002 (17)
3.132 (8)	L:2 021iv	· · · ·
	LI3-021	1.932 (15)
1.526 (7)	Li3-O22 ⁱⁱ	2.00 (2)
1.530 (6)	Li3-O12 ⁱⁱⁱ	2.066 (16)
1.538 (5)	Li3-O11 ^{viii}	2.101 (16)
1.647 (7)	Li3-O12 ^{viii}	2.41 (2)
1.522 (6)		
110.5 (4)	O22-P2-O23	114.4 (4)
112.6 (3)	O21-P2-O23	110.8 (4)
115.8 (4)	O22-P2-O14	103.6 (4)
109.2 (4)	O21-P2-O14	105.0 (3)
101.5 (4)	O23-P2-O14	106.0 (4)
106.4 (4)	P1-O14-P2	123.3 (4)
115.9 (4)		
	5.132 (8) 1.526 (7) 1.530 (6) 1.538 (5) 1.647 (7) 1.522 (6) 110.5 (4) 112.6 (3) 115.8 (4) 109.2 (4) 101.5 (4) 106.4 (4) 115.9 (4)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Symmetry codes: (i) $1 - x, y, \frac{1}{2} - z$; (ii) 1 - x, 1 - y, -z; (iii) x - 1, y, z; (iv) $x - \frac{1}{2}, y - \frac{1}{2}, z;$ (v) $\frac{1}{2} - x, y - \frac{1}{2}, \frac{1}{2} - z;$ (vi) $x - \frac{1}{2}, \frac{1}{2} - y, \frac{1}{2} + z;$ (vii) 1 - x, 1 - y, 1 - z; (viii) $\frac{1}{2} - x, \frac{1}{2} - y, -z.$

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BR1355). Services for accessing these data are described at the back of the journal.

References

- Alaoui ElBelghiti, A., Boukhari, A. & Holt, E. M. (1991). Acta Cryst. C47, 473-477
- Alaoui ElBelghiti, A., El Marzouki, A., Boukhari, A. & Holt, E. M. (1995). Acta Cryst. C51, 1478-1480.
- Belharouak, I., Gravereau, P., Parent, C., Chaminade, J. P., Lebraud, E. & Le Flem, G. (2000). J. Solid State Chem. 152, 466-473.

Bennazha, J., Boukhari, A. & Holt, E. M. (1999). Solid State Sci. 1, 373-380. Brown, I. D. (1981). Struct. Bonding Cryst. 2, 1-13.

- Dridi, N., Boukhari, A., Réau, J. M., Arbib, E. & Holt, E. M. (2000). Solid State Ionics, 127, 141-149.
- El Maadi, A., Boukhari, A. & Holt, E. M. (1995a). J. Chem. Crystallogr. 25, 531-536
- El Maadi, A., Boukhari, A. & Holt, E. M. (1995b). J. Alloys Compd, 223, 13-17.
- El Maadi, A., Boukhari, A., Holt, E. M. & Flandrois, S. (1994). C. R. Acad. Sci. Paris II, 318, 765-770.
- Erragh, F., Boukhari, A., Abraham, F. & Elouadi, B. (1995). J. Solid State Chem. 120, 23-31.
- Erragh, F., Boukhari, A., Elouadi, B. & Holt, E. M. (1991). J. Crystallogr. Spectrosc. Res. 21, 321-325.
- Erragh, F., Boukhari, A., Sadel, A. & Holt, E. M. (1998). Acta Cryst. C54, 1373-1376
- Faggiani, R. & Calvo, C. (1976). Can. J. Chem. 54, 3319-3321.
- Farrugia, L. F. (1997). J. Appl. Cryst. 30, 565.
- Huang, Q. & Hwu, S.-J. (1998). Inorg. Chem. 37, 5869-5874.
- Laligant, Y. (1992a). Eur. J. Solid State Inorg. Chem. 29, 83-94.
- Laligant, Y. (1992b). Eur. J. Solid State Inorg. Chem. 29, 239-247.
- Liebertz, J. & Stahr, S. (1983). Z. Kristallogr. 162, 313-314.
- Moqine, A., Boukhari, A. & Holt, E. M. (1991). Acta Cryst. C47, 2294-2297.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Siemens (1991). XEMP (Version 4.2) and XSCANS User's Manual (Version 2.10b). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Spirlet, M. R., Rebizant, J. & Liegeois-Duyckaerts, M. (1993). Acta Cryst. C49, 209-211.
- Trunov, V. K., Oboznenko, Y. V., Sirotinkin, S. P. & Tskhelashvili, N. B. (1991). Izv. Akad. Nauk SSSR Neorg. Mater. 27, 1993–1994.